

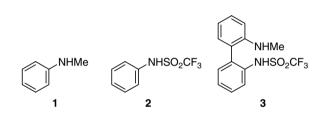
Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 3039-3041

Tetrahedron Letters

Organocatalytic oxy-Michael addition of alcohols to α,β-unsaturated aldehydes

Taichi Kano, Youhei Tanaka and Keiji Maruoka*


Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Received 1 February 2006; revised 27 February 2006; accepted 1 March 2006 Available online 20 March 2006

Abstract—1,4-Addition of alcohols to α , β -unsaturated aldehydes was found to be efficiently promoted by biphenyldiamine-based catalyst **3** without formation of the acetals.

© 2006 Elsevier Ltd. All rights reserved.

β-Hydroxy carbonyl compounds and their alkoxy analogues are very important as valuable building blocks and structural motifs in a variety of natural products.¹ and these compounds are usually prepared by the aldol reaction² and the subsequent alkylation of the resulting hydroxyl group. Alternatively, intermolecular 1,4-addition of alcohols to α,β -unsaturated carbonyl compounds also represents an attractive method for the direct synthesis of β -alkoxy carbonyl compounds. Such oxy-Michael additions of alcohols to α,β -unsaturated ketones or esters have recently been reported to be promoted by several catalysts such as PMe₃,³ DBU,⁴ Tf₂NH⁵ and transition metal complexes;⁶ however, the oxy-Michael addition of alcohols to α,β -unsaturated aldehydes remains a challenge, mainly because of the competitive acetal formation. On the other hand, 1.4addition reactions of other heteroatom nucleophiles such as thiols⁷ and amides⁸ to α,β -unsaturated aldehydes via iminium ion intermediates have recently been realized by secondary amine-acid salt catalysts. In this context, we are interested in developing a novel secondary amine-type catalyst for the 1,4-addition reaction of alcohols to α,β -unsaturated aldehydes. Herein, we wish to report that biphenyldiamine-based organocatalyst can be successfully utilized to realize the first intermolecular oxy-Michael addition reaction of alcohols to α , β -unsaturated aldehydes without the acetal formation.

We chose N-alkyl aromatic amines as a catalyst for the oxy-Michael addition due to its having enough nucleophilicity to form the iminium salts of α , β -unsaturated aldehydes as a reactive intermediate,⁹ in addition to the ease of structural and electronical modifications. Thus, the oxy-Michael reactions of methanol to 2-heptenal were carried out in MeOH/H₂O (95:5) in the presence of 5 mol % of N-methylaniline derivatives at 0 $^{\circ}$ C, and the results are summarized in Table 1. While the reaction with N-methylaniline (1) gave only trace amounts of the desired oxy-Michael adduct 4 (entry 2), the addition of HCl co-catalyst accelerated both the oxy-Michael addition and the acetalization (entry 3). Use of a weaker acid such as TFA led to an increased ratio of oxy-Michael adduct 4 to acetal 5 (entry 4). Moreover, in the case of the weakly acidic additive 2, the oxy-Michael addition occurred exclusively to give 4 in moderate yield (entry 5), while it was found that 2 itself could not catalyze the oxy-Michael addition (entry 6). Based on these observations, we then prepared the biphenyldiamine-based catalyst 3,¹⁰ which has both secondary amine and acidic moieties in the molecule, and consequently, it was found that the reaction using 3 proceeded smoothly to give oxy-Michael adduct 4 in good yield (entry 7).

Keywords: Oxy-Michael addition; α , β -Unsaturated aldehyde; Organocatalyst.

^{*} Corresponding author. Tel./fax: +81 75 753 4041; e-mail: maruoka@ kuchem.kyoto-u.ac.jp

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.001

 Table 1. Oxy-Michael addition of methanol to 2-heptenal with aromatic amine-based catalysts^a

Bu	5 mol% cat	Ви Сно	o ^{Bu} ∽	⊖OMe
	MeOH/H ₂ O	ÓМе		ÓМе
		4	5	
Entry	Catalyst	Time (h)	% Yield ^b	
			4	5
1	_	10	0	4
2	1	10	5	0
3	1 + HCl	4	23	29
4	1 + TFA	4	42	15
5	1 + 2	10	51	0
6	2	10	0	10
7	3	10	87	0

 a The reaction of 2-heptenal (0.25 mmol) was carried out in the presence of 5 mol % of the catalyst in MeOH (950 $\mu L)$ and H₂O (50 $\mu L)$ at 0 °C.

^b Isolated yield.

We next examined the scope of the oxy-Michael addition between various α,β -unsaturated aldehydes and alcohols catalyzed by 3, and the representative results are summarized in Table 2.11 The oxy-Michael addition of methanol to α,β -unsaturated aldehydes, which have a primary alkyl or a secondary alkyl group at the β-position, gave the corresponding oxy-Michael adducts in moderate to good yields (entries 1-4), while the reaction of sterically hindered tert-butyl-substituted analogue resulted in a decrease in yield (entry 5). In addition, catalyst **3** was also shown to be effective for the oxy-Michael addition of ethanol, allyl alcohol and benzyl alcohol, and the corresponding oxy-Michael adducts were obtained in moderate to good yields (entries 6-8). Since benzyl and allyl groups can be easily removed from the products formed, both oxy-Michael adducts of benzyl alcohol and allyl alcohol serve as synthetic equivalents to oxy-Michael adducts of H₂O. In each case, the addition of a proper amount of H₂O to the alcohol solvent is necessary to attain good chemical yields.

Table 2. Oxy-Michael addition of alcohols to α,β -unsaturated aldehydes catalyzed by biphenyldiamine-based catalyst 3^a

R	СНО	5 mol%	→ Y	СНО	
	<i>i</i> 0110	R ² OH/H ₂ O ÓR ²			
Entry	\mathbb{R}^1	\mathbb{R}^2	Time (h)	% Yield ^{b,c}	
1	<i>n</i> -Bu	Me	10	87	
2	<i>n</i> -Pr	Me	8	83	
3	BnCH ₂	Me	10	80	
4	<i>i</i> -Pr	Me	10	72	
5	t-Bu	Me	36	41	
6 ^d	<i>n</i> -Bu	Et	22	81	
7 ^e	<i>n</i> -Bu	Allyl	40	72	
8 ^e	<i>n</i> -Bu	Bn	24	64	

^a Unless otherwise noted, the reaction of an α , β -unsaturated aldehyde (0.25 mmol) was carried out in the presence of 5 mol % of **3** in an alcohol (950 μ L) and H₂O (50 μ L) at 0 °C.

^b Isolated yield.

^c Acetal was not detected.

 d EtOH (970 $\mu L),$ H_2O (30 $\mu L).$

^e Alcohol (990 μ L), H₂O (10 μ L).

In summary, we have shown the efficiency of the biphenyldiamine-based organocatalyst **3** for oxy-Michael addition reactions of alcohols to α,β -unsaturated aldehydes under mild conditions. Under these conditions, acetalization of α,β -unsaturated aldehydes was not observed. Further work aimed at the development of an asymmetric variant of this process is currently underway.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and notes

- Misra, M.; Luthra, R.; Singh, K. L.; Sushil, K. In Comprehensive Natural Products Chemistry; Barton, D. H. R., Nakanishi, K., Meth-Cohn, O., Eds.; Pergamon: Oxford, UK, 1999; Vol. 4, p 25.
- (a) Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004; (b) Alcaide, B.; Almendros, P. *Eur. J. Org. Chem.* 2002, 1595.
- (a) Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 8696; See also: (b) Jenner, G. Tetrahedron Lett. 2001, 42, 4807; (c) Jenner, G. Tetrahedron 2002, 58, 4311; (d) Kisanga, P. B.; Ilankumaran, P.; Fetterly, B. M.; Verkade, J. G. J. Org. Chem. 2002, 67, 3555.
- Murtagh, J. E.; McCooey, S. H.; Connon, S. J. Chem. Commun. 2005, 227.
- 5. Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, 2141.
- (a) Nikitin, A. V.; Kholuiskaya, S. N.; Rubailo, V. L. J. Chem. Biochem. Kinet. 1997, 3, 37; (b) Miller, K. J.; Kitagawa, T. T.; Abu-Omar, M. M. Organometallics 2001, 20, 4403; (c) Ganguly, S.; Roundhill, D. M. Organometallics 1993, 12, 4825; (d) van Lingen, H. L.; Zhuang, W.; Hansen, T.; Rutjes, F. P. J. T.; Jørgensen, K. A. Org. Biomol. Chem. 2003, 1, 1953; (e) Farnworth, M. V.; Cross, M. J.; Louie, J. Tetrahedron Lett. 2004, 45, 7441.
- Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A. J. Am. Soc. Chem. 2005, 127, 15710.
- 8. Takasu, K.; Maiti, S.; Ihara, M. Heterocycles 2003, 59, 51.
- 9. Since the reaction using either anhydrous methanol as a solvent or *N*,*N*-dimethylaniline–2 salt as a catalyst was significantly retarded, we believe that the present reaction proceeds via the iminium intermediate.
- 10. 2-Trifluoromethanesulfonylamino-2'-methylamino-1,1'biphenyl (3): To a stirred solution of 2-methylamino-2'amino-1,1'-biphenyl¹² (198 mg, 1.0 mmol) and ⁱPr₂NEt (174 µL, 1.0 mmol) in CH₂Cl₂ (10 mL) was added Tf₂O (168 µL, 1.0 mmol) dropwise at -78 °C. After 3 h of stirring at -78 °C, the reaction mixture was poured into water and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/CH₂Cl₂ = 1:1) to afford **3** (182 mg, 0.55 mmol, 55% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.60 (1H, d, J = 7.6 Hz, Ar-H), 7.37–7.46 (4H, m, Ar-H), 7.17 (1H, dd, J = 1.2, 7.6 Hz, Ar-H), 6.98 (1H, appt, Ar-H), 6.89 (1H, d, J = 8.4 Hz, Ar-H), 2.83 (3H, s, NHCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 133.7, 132.5, 131.5, 131.4, 129.8, 129.0,

127.9, 125.9, 125.3, 120.1, 119.4 (q, $J_{C-F} = 324 \text{ Hz}$), 112.7, 31.3; IR (neat) 3340, 2360, 1364, 1271, 1225, 1196, 1140, 959, 822, 741, 597 cm⁻¹; HRMS (ESI-TOF) Calcd for $C_{14}H_{14}F_{3}N_{2}O_{2}S$: 331.0723 ([M+H]⁺); Found: 331.0722 ([M+H]⁺).

11. Typical procedure for the oxy-Michael addition of an alcohol to an α , β -unsaturated aldehyde: To a solution of catalyst **3** (4.1 mg, 0.0125 mmol) in MeOH/H₂O (95:5 v/v, 0.25 M) was added (*E*)-2-heptenal (33 µL, 0.25 mmol) at 0 °C. Upon consumption of the starting material, the reaction mixture was directly purified by flash column chromatography on silica gel (pentane/diethyl ether = 4:1 as eluent) to afford 3-methoxyheptanal (31.4 mg,

0.218 mmol, 87% yield): ¹H NMR (400 MHz, CDCl₃) δ 9.81 (1H, t, J = 2.4 Hz, CHO), 3.71 (1H, m, CHOMe), 3.35 (3H, s, OMe), 2.60 (1H, ddd, J = 2.4, 7.2, 16.4 Hz, CHHCHO), 2.52 (1H, ddd, J = 2.0, 5.2, 16.4 Hz, CHHCHO), 1.25–1.65 (6H, m, CH₂CH₂CH₂), 0.91 (3H, t, J = 7.2 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 76.3, 56.8, 48.0, 33.6, 27.3, 22.8, 14.1; IR (neat) 2957, 2930, 2860, 2826, 2725, 2342, 1724, 1466, 1094, 1032, 748 cm⁻¹; HRMS (ESI-TOF) Calcd for C₈H₁₆O₂Na: 167.1043 ([M+Na]⁺); Found: 167.1048 ([M+Na]⁺).

 Calcinari, R.; Case, N.; Guerrato, A.; Milanino, R.; Passarella, E.; Perchinunno, M.; Tamburini, B.; Sparatore, F. J. Med. Chem. 1981, 24, 632.